25th Annual

Software Engineering Workshop
November 28-30, 2000 at NASA/GSEC

Understanc;ing Software
or
Project Management

Presented by: P. A. “Trisha”’Jansma
Manager, CSMISS IT Workforce Enrichment Element

Jet Propulsion Laboratory, California Institute of Technology

% and Sehtwere Systems

Copyright © 2000, California Institute of Technology. - ALL RIGHTS RESERVED.
U. S:Government Sponsorship Acknowledged under NAS7-1260 and NAS7-1407.

J <5th Annual Softwars

&’}é Engineering Workshop Cour se Goals
‘———————————-——-_.__._____________——-—__-——-—-—-——_J

; {.:\!w;,

+ To provide a general awareness of software
Mmanagement issues for Project Managers, or
others from a non-software background, who
want to gain some familiarity with software issues
that may affect the success of their projects.

+ To help Project Managers know how to manage
their software development activities better so
that they can use their scarce Information
Technology (IT) workers or “techies” more
efficiently.

“Tech-Project Inefficiencies Found in Corporate Study”
by:Rache! Emma Silverman, Wall Street Journal, Nov. 14, 2000

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 2

23th Annuat Soflware :
\ Engineering Workshop TOplCS tO be COVGI" ed

ok

T ———

+ Software Management Overview:
Trends and Definitions

+ Software Planning

+ Similarities and Differences Between
Hardware and Software

~+ NASA Lessons Learned

+ Software Life Cycles

+ Software Metrics and Tracking
+ Software Perceptions

+ Software Management Considerations

PAJ: 11/28/2000

Understanding Software for Project Management Tutorial - 3

S 25t Annual Software SOFtware Management
B2 M Enginecring Workshop Overview

M
Objectives
+ To discuss some trends in software within NASA.

+ To distinguish between software management and
software engineering.

Seftware

Nk - Seftware
Engineering

Management

+ To discuss software management planning.

+ To provide an overview of types of mission software.

PAJ:. 11/28/2000 Understanding Software for Project Management Tutorial - 4

§ 25th Annual Software .
o Engineering Workshop Trends in

¥ Substantially more powerful flight computers are coming
into play.

+ Ground and flight software, in concert, is assuming an
increasing role in mission capability and performance.

+ New system development tools that have emerged over
the past five years are providing powerful, unprecedented
capabilities for developing software system components.

+ Executive directives and the re-shaping of NASA are
requiring the acquisition of new and complex institutional
systems.

+ Software technology has outpaced NASA’s management
capability for software.

Excerpted from a presentation to the NASA Chief Engineer on April 17, 1997
by George Albright of NASA HQ Office of Space Science

PAJ:11/28/2000 Understanding Software for Project Management Tulorial - §

& J o5 Aﬁnuai Soﬁware ; Trends in
iy Engineering Workshop NASA Software (2)

+ Hardware mempry and processors have increased significantly in
capacity and speed.

> For example, 4 KB used to be a lot for on-board memory
~ Mars Pathfinder memory was 128 MB
+ Software applications have become larger and more complex.

4+ More autonomy in the spacecraft and more complex instruments
and .data processing:

+ Much-more:software; both on-board and-in the ground system.
+ Software costs can be as high-as 25% of project costs.

+ Greater use of generalized hardware with customization in the software
(and a desire to-move toward reusable software components).

+ System architecture is an integrated hardware-software design.

Software is an integral and critical part of today’s systems.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 6

25th Anaval Software NASA Software
o} Engineering Workshop Issues and Concerns

+ The inserﬁon of additional, more powerful computers in the
mission creates additional, and fundamentally new challenges
~ in system engineering and quality management.

+ Many programs and project managers lack the technical
background for exercising an equivalent degree of
management insight on software as they do on hardware.

+ Existing NASA policies and directives on software have so
much “wiggle room” that projects can routinely exempt
themselves from software management.

+ A recent study by the Software Engineering Institute (SEI)
revealed that almost 90% of organizations developing
software do so by reliance on personal heroics and “hacking”.

Excerpted from a presentation to the NASA Chief Engineer on April 17, 1987
by George Albright of NASA HQ Office of Space Science

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 7

osth Amnual Sofware ~— General Progress
f Engineering Workshop in Software

+ The ability to reuse éoftware has:increased.
+ Models of software have been developed.

+ Process models exist and provide guidance for developing software
(CMM type of models).

Cost per function has dropped appreciably.
There is much:more machine portability and independence.
Languages.and compilers -are much more efficient and reliable.

Understanding of key considerations in producing software efficiently
and.reliably.

> -processes, -infrastructure, tools, estimation, tracking
(e.g., earned value techniques)

+-Concepts of varying life-cycle models.and when to apply them.
+ Fault tolerance through expert systems.
+ Proven techniques of design are understood.

= (e.g., information hiding, -object oriented design, etc.)

PAJ: 14/28/2000 Understanding Software for Project Management Tutorial - 8

+ o+ v

25th Annual Software o e e
J Engineering Workshop Basic Definitions

— s

+ Software:
> Programs; procedures, rules, and-any.associated documentation

~pertaining to.the operation of a computer system
[ANSI/IEEE Standard 729-1983].

+ Software Engineering:

» ‘The systematic approach-to the development, operation, maintenance,
and retirement of software through the use of suitable standards,
methods, tools, and procedures [ANSI/IEEE Standard 729-1983].

+: Encompasses many diverse activities including requirements analysis,

architectural and detailed design, implementation (coding, programming),
assurance, testing, and maintenance.

+ Not-another term for programming or coding.
+ ..Software Management:

> A disciplined approach to the ptanning, tracking, assessing, and
controlling of software product development through the selection and
use of specific methods, tools, and procedures [JPL D-2352].

PAJ; 11/26/2000 Understanding Software for Project Management Tutorial - 9

ZSth Annual SoRware % :
i Engincering Workshop ~ Software Processes (1)

+ A Process includes the methods, steps, and
management practices used to produce a product.
+ Process examples for software include
> the life-cycle used to develop the software

~ activities within the life-cycle, such as use of peer reviews, code
walkthroughs or inspections

+ Selection of processes is based on the type of software
and its criticality, and schedule/budget constraints.
=-and:also its quality goals - (See slides #64-65).

+ Organizations that adopt disciplined processes find that:
~ the quality of the software improves.

> predictability and manageability of development increases, e.g.,
availability of metrics enabies projects to develop more accurate
cost-and schedule estimates for software.

PAJ; 11/28/2000 Understanding Software for Project Management Tutorial - 10

25th Arnual Software

Enginecting Workstion Software Processes (2)

+ Process requirements, frameworks, and guidelines include:
> Capability Maturity Model (CMM) and Key Process Areas (KPAs)*
Personal Software Process/Team Software Process (PSP/TSP)*
ISO 9000, 1SO 9000-3
IEEE -and ISO Standards and Handbooks
For example, specific JPL Processes include:
+ The JPL Software Development Process Description, JPL D-15378
+.Software Development Principles for Flight Systems, Release 1

+:JPL Software Management Standards Package, Rev. 3 JPL D-4000
(for document formats).

¥

¥

Y

Y

+ A key management role is to define and enforce the
adherence to the selected processes.
*'developed by the Software Engineering Institute (SEI) at Carnegie Mellon University (CMU)

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 11

25&3 Annual Software
& Engineering Workshop

Software Planning

~ Setting the Direction

/3

¥

|

==

PAJ: 11/28/2000 Understarding Software for Project Management Tutorial - 12

AT 25th Annual Software What is
& g Sromneering Workshop Software Planning?

+ Planning:

‘ = Establishes:the framework and benchmark for team members
+ Sets assumptions for carrying out resource estimation
+ Communicates assumed project scope

» Sets rules of communications and reviewing

» Defines roles and responsibilities

> Identifies goals and-expectations of the project
+ As well as limitations and:assumptions

» Defines processes to be used in executing the plan

+ Planning should not:

= Trivialize the nature of the software development process
(e.g., “small matter of programming”) or assume all will go well

» .Assume resource-expenditure equates to progress (Brooks’ Law)

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 13

§ 25th Abnual Software _ Typical SMP Topics

Engineering Workshop

+ A good Software Management Plan (SMP) should
address the following:
~ Key Software Roles and Responsibilities, Staffing Profile
> System Development Approach
‘ + Methodology, Life Cycle,.Deliverable Products, Reviews
+ Development Standards-and Tools
= Risk Management Approach (if not already covered in PIP)
Application Standards, Data Standards & Technology Standards
Documentation Plan-and Procedures
Configuration' Management Plan

Y

¥

Y

> Quality Assurance Plan it is imperative that the plan be

= “Security Approach established and continuaily updated
o as additional information becomes
» Acronyms. and Abbreviations available.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 14

25th Annual Software Reasons Software
v Enginesring Workshop Planning Can Go Aw.

+ Techniques for estimating software are poorly developed.
> They reflect the untrue assumption that all will go well.
> They fallaciously.confuse effort with progress.

+ Because of uncertainty in software estimates,

software managers lack the courteous stubbornness
of the ‘Chef at Antoine's’.

> “Good cooking takes time. If you are made to wait,
itis to serve you better, and-to please you.” (menu at Antoine’s)

+ Schedule progress is poorly monitored.

+ When schedule slippage is recognized, the usual
response is to add manpower or to compress later phases.

Accumulated-experience has enabled us to address
some of these historical planning-issues:

Excerpted from The Mythical Man-Month by Frederick P. Brooks

PAJ; 11/28/2000 Understanding Software for Project Management Tutorial - 15

25th Annual Software Support Activities That

. Engingering Workshop) MUSt be Assigned
"+ ‘Process Engineering’ activities
: : Deﬁné and deploy appropriate processes for the project
; + standards, policies; procedures
Carry out- measurement activities (e.g. metrics, EVM, etc.)
Implement improvement initiatives
Independent benchmarking verification (CMM; I1SO,...)

+ ‘Configuration Management’ activities
» Maintain list of all controlled items (require process for change)
s Establish procedures for executing change to agreed artifacts

+ ‘Software Quality Assurance’ activities
» Verify agreed processes are utilized
= Verify each product conforms to agreed form and format

> Facilitate the deployment of concepts and approaches for
quality to the entire project

PAJ: 11/28/2000 Understanding Software for Project Management Tutoriat - 16

B

Y

Y

Y

Y

3 25th Aénaai éaﬁware
A |’ Engineering Workshop Software Inven tO"y

+ Good software management means that the manager
understands the full scope of the software to be
~managed and developed.

> How many systems.and subsystems?
> ‘What types of software?

+ A software inventory includes a comprehensive list of:

» all the software that will be developed or procured by the
project, as well as

> its type, criticality, and quality goals.

+ The software inventory provides the basis for defining
the software processes and plans.

A Project involves multiple, inter-dependent software
development efforts, some occurring in parallel.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 17

) 25th Annual Software . ‘ n
o0 2 A cogineering worksnos ~ 1YP€S Of Project Software
\ .

-"/ I S

-

Onboard Flight Software, including operating systems
Ground Operations Software (uplink, downlink)
Mission: Planning and Scheduling Software
Scientific/Analysis Software

Software Development Environment, including fools for
problem management, configuration management,
Computer Aided Software Engineering (CASE), etc.

Software Test Environment including:automated test tools,
test drivers, debuggers, diagnostic software, test data or databases

Simulation-‘Models

+
+
+
+
+

+

System/Project Testbeds, Simulators, etc.
Hardware Design (CAD) and Diagnostic Software

Firmware -- FPGAs (Field Programmable Gate Arrays) and
ASICs (Application Specific Integrated Circuits)

+ 0+ 4+ +

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 18

25th Annual Soltware

L ‘ R
) Engineering Workshop - SOFtware Criticality Classes

/ &

iy

Lo,
\ W

+ Just as for hardware, there are Software Criticality

Classes (e.g.,.JPL D-15378, The JPL Software Development Process
Description):

~ A: Mission Critical
~ B: Mission Support
~ C: Development Support
» Dz Noen-=Deliverable

+ Within a software type, there may be different criticalities
= e.g., compilers and some ground software are “mission critical”

+ Meeting software criticality goals is accomplished, not
only through the architecture/design, but also through the
processes used to develop the software.

PAJ:. 11/28/2000 Understanding Software for Project Management Tutorial - 19

25&1 Anndéi Soﬁwére .
Engineering Workshop Lessons for Planning

1. Identify Processes Explicitly in Software Planning
2. Demand Quality

3. Plan at Ieast‘ 35% for Testing

4. ldentify and Mitigate Risks

5. Capitalize on Previous Experience and Lessons Learned

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 20

| 25t Annual Software .
Engineering Workshep Pla"mng Lesson #1

Identify Processes Explicitly
+ .Planning must:include agreed ‘approach’ for software
> Approach include standards, policies, procedures

= Agreement includes management, assurance support, and
developers

= Role of assurance is to record agreed processes (form a
contract) then to periodically audit use of processes

4+ Software team selects processes

= Within guidelines of the organization, developers (managers)
select approach - forms a ‘contract’

> When processes are stipulated top-down, occasional
resistance occurs

+ Agreement.enhances communications and clarifies expectations

+ Insist that software processes be identified
+.Assign responsibility for identifying, reviewing, reporting use

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 21

25th Annual Software.
l’/ Engineering Workshop

Demand Quality
+ Establish models of quality

> Define defectrates as targets - adopt and communicate models

> Apply measurement to track quality and to raise awareness

> As measurements (metrics) are analyzed, improved models are buiit
+ Expect quality

= High-quality software can and should be produced.

+ Defects will always be injected,
but techniques exist to remove them.

> Roles of software manager, assurance support, and process support
are to produce high-quality; hold them accountable in planning.

= Appropriate resources must be allocated to ensure quality

+ Allocate approximately 3% to 6% of budget for quality assurance,
process engineering, configuration management.

» Assign specific responsibilities for assurance, process engineering,
configuration management.

Planning Lesson #2

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 22

25th Annwal Saﬁwaré Where is

Engingpring Wart hay Software Effort Spent?
USAID NASA
Project
Management Project
8% Management
1%

4= Assurance
) 3% ¥~ Assurance
2%
Documentation
6%

Documentation
5%

(o1
2%

Mature organizations allocate up to.6% of
system cost for assurance, process, CM

* Process Engineering averages 0.9%, but is charged to overall organization (not project)

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 23

25th Annual Software . ;
Engineering Workshop Error Detection Rate

Example of Model Building at NASA

1o
(o]
gt
0N
X
"
g
w
Code Test System:Test Acceptance Test Operations
Empirical models aid in planning (e.g., testing) and in performance analysis
* Based on 5 similar.projects in NASA/GSFC (ground support systems)
PAJ; 11/28/2000

Understanding Software for Project Management Tutorial - 24

+ NASA/GSFC historical data indicates 30-35% ($) for

iﬁth Anm‘}ai Saﬁware; :
']’}é Engineering Workshop P Iann’ng Lesson #3

Plan for Testing

software testing in successful projects

> -Includes system test; integration test, acceptance test @
= Historical information can help determine when to stop testing

+ Failure to allow:enough time for software test, is peculiarly

disastrous. Since the delay comes at the end of the schedule, no
one is aware of schedule trouble until almost the delivery date.”
- The Mythical Man-Month, by Frederick P. Brooks

+ ‘Testing software is the only means available to determine levels

of confidence in performance.

». Testing will uncover errors, can demonstrate functions are
performing correctly, and can provide good data on reliability.

»~ But: Testing cannot show or guarantee the absence of
defects; it can only show that defects are present.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 25

- Zﬁzthnnuéi Software ;
A Engineering Workshop P ’ann'ng Lesson #4

Identify and Mitigate Risks
+ Software planning has numerous limitations -
address them
> ldentify assumptions
> Plan to accommodate change

Rs =
+ Identify software risks and develop risk mitigation plans

» To enable management and control, identify, quantify, monitor
and:mitigate potential software risks throughout the life-cycle

+-e.g., create a “Red-Yellow-Green” chart to monitor risk status
> Schedule:analysis and reporting milestones
+ Set reasonable goals of performance
= Utilize empirical data (histories) to set goals.

+ ReqUirements, environment, et
priorities will change Software

PAJ: 11728/2000 Understanding Software for Project Management Tutorial - 26

25th Anﬁmiﬁaftwam .
Enginesring Workshop Plann’ng Lesson #5

Capitalize on Experience
+ Every software project is unique, but...
> We have learned to‘reuse’ with caution.
»-Domains and classes of software can provide guidance.
+ Historical records of successes and failures should be
‘required reading”.

> During planning, assure that software staff utilizes historical
information (lessons learned).

=~ Risk management can be guided by historical perspective.
+ Software historical metrics provide:
»: Estimates of units of output per staff size (productivity)
= Phasing. distribution (requirements, design, code, test, QA, CM,..)
> Models of development

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 27

9 osin Armua! Software ;. g
A Engineering Workshop ~ SOFftware Planning Summary

E : e —————————————————— e

+ While there are no "silver bullets”, there are
proven technigues to manage software.

+ Software Management needs to be
approached as the technical discipline it is,
not as a “mysterious art”. {

+ While software development is not necessarily
*harder” or more difficult than hardware
development, it IS different and needs to be

managed accordingly. | Software
Management
» A good software management plan and meaningful plan

tracking of progress can go a long way towards
mitigating risk and ensuring success.

PAJ: 11/28/2000) Understanding Software for Project Management Tutorial - 28

Rl Lo workenss Similarities and Differences
<

Objectives

+ To explore some similarities and differences between
hardware and software

+ To understand some unigue aspects of the software
development process and ways to mitigate them.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 29

ol Similarities of
o 25th Annual Boftware :
y Engineering Workshop Hardware and Software

+ :Many sifmilar%types of reviews, processes, and deliverable
products are required for both hardware and software:

> Requirements documents and requirements reviews
- o> Elnterface‘s need to be carefully defined (ICDs, SISs)

= Design documents-and design reviews

> Allocation of functionality. to.components

= Many COTS products are available at various levels
+:Hardware: components/chips, boards, product, systems
+:Software: functions, programs, libraries, applications, systems

> Implementation and various levels of testing and test plans

> User’s Guide and/or Operator’'s Manual

» Configuration Management and Problem Management

> Quality Assurance

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 30

o5t Arnual Software .
¢ Engineering Workshop D 1 ﬁer ences

+But software is also different
from hardware in many ways.

PAJ: 11/28/2000. Understanding Software for Project Management Tutorial - 31

TR 25th Annual Software Software is Different
M Engineering Workshop from Hardware (1)

0 Differences with tesgect to system reliability
.+ Difference > Implications --> Mitigation Strategy

: ¢ Software does not degrade due to wear or fatigue.

> But-at some point, software can’t handle changes in the
environment (e.g., new version of the OS, DBMS, or compiler
or new inputs, interfaces, hardware speed, or database fills up, etc.

= Mitigation 8lrategy: Allocate resources and staff for software
maintenance; plan and determine the timing of system upgrades.

+ Software results are unconstrained by any laws of physics.

> |f a program expresses the force of gravity with the wrong sign,
the calculations will produce the effect of anti-gravity.

> Mitigation Strategy: Ensure that domain experts review algorithms,
computations, and test results for correctness and accuracy.

Excerpted from a “integrating Software Engineering and System Engineering” by
Dr..Barry Boehm, USC Computer Science Dept., The Journal of NCOSE Vol. 1 1994

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 32

| 25tH Annual Saft@are Software is Different
- Engineering Workshop from Hardware (2)

‘Diffarenr;es with respect to system reliability (Cont)

+ Software interfaces are conceptual rather than physical.
>There is no easy-to-visualize three-prong plug and its mate.

= Mitigation Strategy: . Ensure that all external and internal
interfaces are thoroughly documented, reviewed and tested to
an appropriate level of granularity.

+ There are many more distinct logic paths to check in
software than in hardware. There are many more distinct
entities to check.

> Any item in a'large file may be a source of error.

» Mitigation Strategies: Employ test coverage software and/or
develop and test functional threads through the entire software.
Develop and conduct a sufficient number of test cases. Guard

and preserve the schedule time for the test period.

Excerpted from a “Integrating Software Engineering and System Engineering” by
Dr. Barry Boehm, USC Computer Science Dept., The Journal of NCOSE Vol. 1 1994

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 33

25th Annual Software - Software is Different

§7 Engineering Workshop from Hardware (3)

Differences with respect to systemn reliability {Cont.}
_+ The error modes are generally different.

~ Software errors generally come with no advance warning,
_ provide no period of graceful degradation, and more often
_ provide:no announcement of their occurrence.

> Mitigation Strategy:: Encourage developers to-include error
checking code in their programs and corresponding error
messages which are truly meaningful. Ensure that your testing
team has people who are good at troubleshooting.

+ Repair of a hardware fault generally restores the system to its
previous condition.

> Repair of-a software fault does not.

= ‘Mitigation Strategy: Realize that much software maintenance is
for the purpose of fixing bugs (the process itself can also
introduce new bugs!) and for adding new features. Hence, the
maintenance process needs to be managed like the development

activity it iS. Excerpted from a “Integrating Software Engineering and System Engineering” by
Dr. Barry Boehm, USC Computer Science Dept., The Journal of NCOSE Vol. 1 1984

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 34

25th Annual Software Software is Different
L Enginesring Workshop from Hardware (4)

+ Software tends to resist freezing. It is truly soft.

> New releases can aften require reaching back into previously
released components in order to install “hooks” and features
required by the new release.

> Mitigation Strategy: Realize that software’s flexibility is a mixed
blessing.: Ensure that-adequate change control and CM are
employed, enforce “freeze dates” and ensure that adequate time
is allocated for making and testing software changes.

+ Software sports an unfamiliar, obtuse jargon.
= “The boot code pointer array requires a low order bit shift.”

> Mitigation Strategy: Pick a good information modeling approach
and then train developers, reviewers and key managers on the
methodologies, information modeling approaches and notations
used on the project. Train managers in “computer literacy.”

Excerpted from a presentation to the NASA Chief Engineer on April 17, 1997 by
George Albright of NASA HQ Office of Space Science

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 36

o 25th Anﬁuai Software. Software is Different
b2 AT Engineering Workshop ; from Hardware (5)

+ Software testing can be especially challenging.

> Major system simulators must often be developed, which will
usually be daunting system development on their-own.

> Mitigation Sirategy: Allocate sufficient schedule time and
resources to set up and deploy the test environment, to develop
test scripts and test software, and to conduct the test cases and
review/analyze the results.

4+ Excerpted from:a presentation to the NASA Chief Engineer on April 17, 1997 by
George Albright of NASA HQ Office of Space Science

+ Progress in software is slower than in hardware.

= . .. the anomaly is not that software progress is slow, but that
computer hardware progress is so fast. No other technology
since civilization -began has seen six orders of magnitude in
performance-price gain in 30 years.”

+ Excerpted-from “No Silver Bullet: Essence and Accidents of Software
Engineering” by Frederick P. Brooks, Jr., Computer Magazine, April 1987

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 36

Zﬁikh Anm@ Software ~ Essence of
S Engineering Workshop - Modern Software

Complexity

= Notwo parts of a software entity are alike. . . Software systems
‘have orders-of-magnitude more states than computers do.
Complexity increases non:linearly with size.

> ‘From the complexity .comes the difficulty
of communication among team members.

+ Conformity

= Much complexity is arbitrary. complexity forced by the many
human institutions and systems to which software interfaces
must conform.

'+ Changeability

= ‘Constantly subject to pressures for change since the software
of a system embodies its function. . . because software can be

ily.
Changed more eas ly Excerpted from “No Silver Bullet:

icibili Essence and Accidents of Software
+ InVlSlbl“ty Engineering” by Frederick P. Brooks,

» Software is invisible and unvisualizable. LI Computer Magazine, April 1987

PAJ: 11/26/2000 Understanding Software for Project Management Tutorial - 37

- ¥ 25th Annual Software -
= :Engineering Workshop

NASA Software
Lessons Learned

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 38

| 25t Annual Software
|7 Engineering Workshop Lessons Learned

4+ “Those who cannot remember the past are condemned to
repeat it.” or “Those who do not learn from history are doomed
‘torrepeat it George Santayana, Harvard philosopher

+: "We learn from history that we do not-learn from history.”
Georg W.F. Hegel, German philosopher

+ Somehow we never believe that what happened to “them”
will happen to us or our project.

> ... But that attitude leads to complacency.

+ - Some companies require their managers to spend
one to two weeks prior to the start of a project
reviewing.lessons learned from previous projects.

PAJ11/28/2000 Understanding Software for Project Management Tutoriat - 39

25th Annual Soft
A4 cogineorna workense NASA Lessons Learned

+ Ofthe 900 lessons learned in the NASA
Lessons Learned Information System (LLIS)
http://llis.nasa.gov/ ,117 are related to software.

+ 45 JPL lessons cover topics such as:

= Specific software problems on missions such as Voyager,
Galileo; Mars Observer, Magellan, Mars Global Surveyor, Mars
Pathfinder; Mars Climate Orbiter, Mars Polar Lander, etc.

» -Software processes, reviews, methods, fault tolerance and fault
protection, real-time operations, IV&V, PFRs, testing, etc.

+ 72 lessons from other Centers cover topics such as:

» Software upgrades, testing, management and planning, ground
support equipment (GSE), redundancy, reliability, IV&V,
problem reporting, fauit tree analysis, maintainability, etc.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 40

TRy 25th Annual Softivare | Recent NASA JP L
" Engineering Workshop Failures (1)
\ *

f ~ Mars Climate Orbiter (MCO) Failure

~ “Small Forces” software which created Angular Momentum
Desaturation (AMD) file used.in.trajectory models provided
thruster performance data in English units vs. Metric units.

-~ > No flowdown of requirements from higher-level MCO SIS to
Software Requirements Document.

> Lack of rigor in software specification -- Small Forces software
specification did-not state required engineering units.

> End-user (navigation) representative not specifically requested
to attend major reviews, walkthroughs or acceptance test.

> Software walkthrough-process was not adequate -- required
persons not'in attendance, SIS not used, action items not
published

~ Interface between Small Forces software and Navigation
software not tested.

> Inadequate training and staffing.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 41

o o5 annual sorware IR€CENt NASA JPL
VW : Engineering Workshop o Fallur es (2)

. Mars Polar Lander (MPL) Failure

> Premature Descent Engine Shutdown -- Touchdown sensors
: generated a false momentary signal at leg deployment and the
:ﬂlght software (Touchdown Monitor)-incorrectly interpreted these
spurious signals as valid touchdown events. When the sensor
data was enabled at an altitude of 40 meters, the engines would
shutdown and the lander would probably free fall to the surface.

= Incomplete requirements specification and flowdown regarding
failure modes for leg deployment and touchdown led to software
design that did not-properly account for the presence of transient
or spurious signals.:

> Software test planning did not identify all sets of conditions that
could “break” the software.

PAJ: 11/28/2000 Understanding Software for Project Management Tuterial - 42

¥ 25th Annual Sﬁftwaré Recen_t NASA JPL
Engineering Workshop Failures (3)

vy

g

+ Mars Global Surveyor (MGS) Failure

» Aerobraking.Extra Burn Anomaly:(1997) -- An unintended repetition
of MGS Aerobraking Maneuver #5.occurred after the intentional burn,
i e, the spacecraft unexpectedly repeated the aerobraking maneuver,
imparting an additional delta-v to the S/C.
%+ To avoid a-deeper penetration into the Martian atmosphere, the flight team designed,

. uploaded; and successfully commanded a third "antidote” maneuver which
counteracted.the effect of the unplanned second maneuver.

= The cause:of the incident was traced to an incompatibility between
ground and flight software. A new version of the ground software had
been.installed in the ground data system one day earlier than planned.
This new software had been redesigned to improve programming and
command efficiency. Certain memory partitions were reassigned in on-
board memory.
4+ Due to the-address changes, the recently executed Aerobraking Maneuver #5 was
loaded into-the partition originally intended for the next science sequence. Hence,
when the spacecraft command data subsystem (CDS) executed "Next Sequence,”

the Aerobraking Maneuver #5 sequence was still present in memory, and it was
performed instead of the science sequence.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 43

. : Recent NASA JPL
25th Annual Software : e
W Engineering Workshap Failures (4)

i

+ Mars Global Surveyor (MGS) Failure (Cont.)

= Confiquration Management

_+ Prior to implementing any change in command and control
- .software, verify that the configurations of ground and flight
software are compatible.

+ Provide a method for identifying the time-criticality of any flight
software configuration change.

~ Software desigh and implementation should minimize the
possibility of accessing onboard stored command sequences at
inappropriate times.

»-Development and use (operations) of flight and ground software
should be closely coordinated from the very beginning and
throughout the life of the project.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 44

25th Annual Boftware
Engineering Workshop

Causes of Software
Cost Growth at NASA JPL

Cost Growth Causes
Cost Growth Sources Process People/Teams Toois & Methods
+No generally accepted planning process for softwars ' SW team not included In early stagss | » Poor and constantly changing
o Poor planning and developriant: planning.is targely dependent on the of planninig assumptions and cost
estimation practices individual 'M:Mmr-wim the m-n)l o * “SW.not recagnized in initial planning :sﬁ«u:&oﬂ me:mods
. + Uniqueniess of software riot captured in Int + Lack of software plannin
Planning |2 '"\:I“m‘”’"‘ reserves for |2 etonal i deivarabla) e tools plamning
o SW requiremants and design are. more volatite & solidify * Lack of SW cost metrics.
later. than hardware in the Ife cycle:
+" Don't know how 1o freaze softwars requiremisiis the
st way we kriow: how to,ffeeze hardware:
requirements
*-Lack of good +:: Subsystern view of spacacraft - not viewed as important | « No awareness or recognition aven at
architecture and 10 have a top-level architacture early in the project. the mission & system level that
. iorii + Software design is traditionally done at the subsystem soRware needs to be addressed,
Require: . ;yst(:r;::ri:orm: level (based on hardware perspective) v + Don't view architecture as a software
ménts & ystems decision: . i Issues are not worked out in intensive process
Design: “ Phase A/B
forjmpact |, ¢ t can lead to interface problems
on software due 1o lack of communication batween leams especiafly
when there is schedule comprassion.
= Insufficient software + Management and system enginesrs.
experience among have iimited SW experience
. «.. Engineers grew up in a hardware
Experierice managers and system B i"gnsm wﬂm‘d. up
& Teamitig | engineers «" Managers and system engineers do
» Poor.teaming between '2g ystem enginee
nol view software engineers as broad
HW/ SW and enough,
systerns/SW team © Lack of software-systam sngineers
« Software culture is underdeveioped
at the present
« Testbeds; too few, (00 |+ Lack of sufficient funding. « Lack of education & appreciation of | » Dependence an hardwars
late, not validated, + Testbeds not listed in WBS; not accountable. valtie for testbeds. testheds.
Testing insufficient capability . | * Lack of sufficient schedue or facognition of the » Tast team notin place unti lata n ife | + Lack of tools and under
« Lack of early test importance of testing. cycte utilization of existing tools
planning; leck of + "Big Bang siyle tasting waits until end to test. « Intsgration and SW teams not * Lack of controlled tests and
functionalit o Testdocuments not in place until late in life cycle available to support ATLO testdata
+ Inherited code-didnot. |+ Lack of softwars inherltance review process. Many projects fall to bring onboard | + Too many advaniages of
Software behave as i « Inheritance not distinguished betwean reusable code the original developers when they inheritances assumed, esp.
Inheritance] was poorly and code that has not been designed for that purpose. attempt 1o inherit software cost savings
and (typically) only reuses tha design. * Costmodels don't properly
required more * No incentives for projects to develop flly reusable code. account for COTS, sw
i inheritance and modification...
medification than * T0o oftan assumed that
expectsd [% g e g COTS costs are
——
PAJE 11/28/2000 Understanding Softwars for Project Management Tutorial - 45

25th Annual Software gt .
Engineering Workshop R@COmMmMmendations by Risk Area

W
. ettt

NASA JPL

; Recommendations
Risk Area Cost Growth Sourees Process People/Teams Tools/Methods
* Poor planning and: 1 Need afocusedend point with
estimation peactices clear success ériteria
Planning, » Insufficient reserves.for. | 2. - Need better {ailored: risk
Estiration Sw msnage_rr;em plf_n with.
appropriate contingencies
& Control 3: Allme farger percentage.
reserves {0 software
i Lackof good 4. Require that a clear. 6. System Engineers need to understand
architecture and understanding of SW be included that the software provides the system
systermn partitionifg as part of NAR approva level interfaces
Redquire- »“Systems decisions Need good-architecture to define 7. Do notlook at SW.as separate item but
ments & madewithout demarcation between HW and see.as part of an integrated system
Design acgolinting for impact sw design
onsoftware.
" tnsiifficient software. - o 8. Project office needs to have some SW
experience among o o - expertise
Marnagers and system 7 - 9. SW team needs to understand system’
Experience enginesrs. : 10. Everyone should have some mission level
& Teaming '|-* Poor: teaming between - - i . training to provide end-lo'end|
HW/ SWand 5 - understanding of the system
systems/SW team - ; o
¢ Tesibeds; loo few,too | 11,7 Testbeds and simulators needto | 12. Need to have a dedicated integration
late; riot validated, be made a major product team and a dedicated test team whose job
Testing lacked il i thatis early is it to break the software
* Lack of early test in lifecycle 13." Require a test engineer be a member of
planning; lack of the early planning team and reviews.
Junctionality
* “Inherited code did not. | 14:“Need a software inherilance 16. For Inheritance people need to come with | 16. To increase the amount
behave as advertised, review the software of inheritance between
Sofiware was poorly projects, need to create
Inhéritance documented, and infrastructure to provide
required more incentives to develop
medification than reusable code and to
expected maintain it.

l Ref: JPL D-18660, “Flight Software Cost Growth: Causes and Recommendations’

PAJ: 11/28/2000

Understanding Software for Project Management Tutorial - 46

25th Annual Software
Engineering Workshop

Software
Capability Maturity Model
(SW-CMM)

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 47

o ¥ 05th Annual Software Software Capablllt
b\ Engineering Workshop Maturity Model (1

C hai‘a{}{ﬁ‘i"istf(js {)f (::IV; ;NI LGVQIS | Continuous process iprovement iy

enabled by quantitative feedback
from the process and from piloting
innovative ideas.and technologies.

CMM is a yardstick for
measuring ability to deliver
a quality product on

schedule and within budget

Detailed measures of software process and
LCVC] 4 product quality ave collected. Both the
software process and products are quantitatively
understood and controlled.

“Managed”

: The software process for both management and engineering
LeVEl 3 activities §s documented, stapdardized, asd Integrated into a
ch eﬁn e d” standard softw are process f(?r the (W;,{;fni?z}i;i(}q. A’ll projects
! use an approved, tailored version of the organization’s standard
software process for developing and maintaining software.

Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to
repeat earlier successes on project with similar applications.

Software process is characterized as ad hoc and occasionally even chaotic.
Few provesses are defined, and saccess depends on individual effort.
Usually involves “heroics™.

CMM was developed by the Software Engineering institute (SEI), Carnegie Mellon University (CMU
PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 48

| 25th Annual Saﬁwam ; Software Capabilit
A Engineering Workshop Maturity Model (2

MM Levels
- e A . Process Change Management
and co rrespon din g | Technology Change Management
Key Process Areas (KPAs) Defect Prevention

LGVCI 4 Software Quality Management
“Managed” Quantitative Process Management

Leve] 3 ' | Software Product Engineering Peer Review
@ . . Intergroup Coordination Training Program
: Deﬁned Software Process Definition Software Process Focus
~ Integrated Software Management

Software Configuration Management Software Quality Assurance
Software Subcontract Manag t Software Project Planning

Requirements Management Software Project Tracking &
Oversight

Few processes defined
Usually involves “heroics”

Excerpted from A Discipline for Software Engineering by Watts S. Humphrey

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 49

25th Annual Software | Organization
Engineering Workshop Maturity Profile

Organization Maturity Profite August 2000

% of Organizations
N
2
>

initial Repeatable Defined Managed Optimizing
SW-CMM Level

Based on assessments conducted from 1996 through June 2000,
of 901 organizations, 276 participating companies, 4174 projects.

© 2000 by Carnegie Mellon University (CMU), Software Engineering Institute (SEI)
http:/iwww.sei.cmu.edu/semalprofile.htmi

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 50

25th ﬁnnu&i Solftware ‘ \
 Coginsarng workenon OW=-CMM for NASA Centers

+ Dan Goldin, the NASA Administrator, in testimony to the
Congressional Committee-on:Science on 06/20/2000, stated that
- “all NASA Centers are developing plans for attainment of CMM
Level 3 (Defined) for organizations producing critical software.”

> ‘The NASA CIlO has chartered the NASA Software Working Group
(SWG) to prepare the plan for improving NASA software and attaining
SW-CMM Level 3.

+ -Consider steps that you, as a Project Manager, could take to
address SW-CMM Level 2 Key Process Areas (KPAs) on your
project such as:

> Software Project Planning

Software Project Tracking and Oversight
Software Subcontract Management
Software Requirements Management
Software Configuration Management

> Software Quality Assurance

Y

¥

Y

\j

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 51

5 2y 25th Annuéi Software | ; -
A Engincering Workshop Software Life-Cycles

e oY —a———————————

fObjectivés: :

+ Show the role of software life-cycles in defining
software development activities

+ Provide some criteria for selecting life-cycles and
example life-cycles and how they fit into a project
life-cycle

+ Show impact of some key software life-cycle issues:

» prototyping
»life-cycle products {(documentation)
> maintenance

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 52

' ; 25th Annual Software Whatls A
o Engt ing Workshop. H
gy Eroineering Workshop, Software Life-Cycle ?

Software Lifeécycle provides a framework for:
~ + Defining and grouping sub-processes (activities)

> the major engineering activity.provides the name of the
“phase” (but don’t forget other important activities)

» management/tracking/reporting; engineering; test/assurance
+ Showing completion and coordination points with other
_project elements or other sub-processes (reviews)

= ‘Plan/Commitment, Software Requirements,
Software Design, and Operational Readiness Reviews

+ Defining and maintaining controlled records (products)

+ High-level structuring of risk mitigation strategies

Most projects use iterative life-cycles, but all show some form of
“requirements-design-build-test.”

Most life-cycles are frequently realized as GANTT-type schedules.

PAJ11/28/2000 Understanding Software for Project Management Tutorial - 63

= 25?5 Anﬁuai Séﬁware . g .
b2 A cogincering Workshop Iterative Life-Cycles

+ Iterativé models are better able to cope with:
: > Early delii/ery(ies) required to demonstrate functionality

o> P‘oorly understood and/or changing requirements or
_environment. :

> Early support of integration and test activities
> Early user/operator feedback
= -Staffing limitations

+.But can have drawbacks:

» Additional rework between iterations
(rule of thumb 20%, but less than for waterfail)

» More compiex software management, CM, baselining,
reviews, deliveries to operations

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 54

5 25th Annual Software .
vV/ Engineering Workshop Iterative Examples

Generic Iterative Forms

on. Vot N,

Basic Spiral Risk Driven Spiral Wit re s,

Allow iterating through some or all parts of a development cycle.

PAJ:. 11/28/2000 Understanding Software for Project Management Tutorial - 56

a 25th Annual Software . .
A Engineering Workshop Rapld Pr ototyplng

+ Generally considered to be a “partial” life-cycle used
to “discover’ requirements or “explore” implementation
options

+ Must be careful with respect to products:

= Products are intended to be thrown away or
» Must be re-engineered to meet quality requirements
+ Can be seen as early (inner) iterations in a spiral;

must be followed by a waterfall or iterative
development process to produce viable products

+ Prototyping is highly effective as an activity contained
within a phase of an iterative model

PAJ: 11/28/2000 Understanding Software for Project Managerent Tutorial - 56

AT 25&5 Annual Boltware ; o e
., A Engingering Workshep PrOtOtyplng Activities
K

+ Prototyping is a “highly adapted” development activity;
one takes a lot of short-cuts to answer specific questions

+ Prototyping supports many of the life-cycle processes:
~ €.g., requirements definition, design trades, system performance,
implementation options, technology development; tool selection

+ Prototyping must have a plan (goal and schedule) and a
product

+ By-products may be used in “real” development if
brought up to necessary quality standards

+ Should NOT be used as a way to avoid doing
requirements analysis

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 57

Maintenance Activities

+ Corrective maintenance: used to overcome faults.

+ Perfective maintenance: used to improve performance,
maintainability, or other software attributes.

4

Adaptive maintenance: used to keep a software product
usable in a changed environment.

+

Supportive maintenance: used to explain the software,
plan for future support, or to measure software attributes.

+

Much of maintenance performed is perfective or adaptive.

All software will need maintenance.

<+

+

Maintenance must be included in planning.
~ What and how much depends on the use of the software.

PAJ: 11/28/2000 Understanding Software for Project Management Tutoriat - 58

25t Annuel Somware — Tying the Software Life-Cycle
Engineering Workshop .~ fo the Project Life-Cycle (1

+ How many developments does the Project have?

> think of the different kinds of software you identified in your
- software inventory

> each of those has.its own development (or procurement) cycle

> each -must be tied to other related software developments and
to the project life-cycle

+ Management is responsible for coordinating these
“interfaces”

>>> Complexity is the villain! <<<

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 59

25th Annual sorware Tying the Software Life-Cycle
ly Engineering Workshop fo the Project Life-Cycle (2)

g

Typical JPL-Project Life-:CycIe

NASA

FORMULATION IMPLEMENTATION
Phases . :
JPL Life | Pre-Phase A:{ ‘Phase’A: = Phase B: Phase C: Phase D: Phase E:
Cycle Advanced. Mission & Sy Preliminary. | Detailed Design | Build and Test Operations
Phases Studies Definition Design

Major JPL

sjor PMR & ProjectEDR ~ ProjectCDAF - AR MRRFLAR CER
:evlews

Concept Revi ICR CRAA ST Lauith
‘oncept Review urt
4 Con%tment Contract e

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 60

25th Annual Software
Engineering Workshop

Software Life-Cycle Products

vosm

Software life-cycle “products” include planning
documents, schedules, reviews, technical
documentation, software executables, test scripts,
test results, etc.

+ Roll-out complex parts/issues to better manage risk

+ Package documentation to fit:
> life-cycle phases
timing of baselining and control (CM convenience and ISO)

Y

¥

Y

¥

level of risk/complexity
authorship
level-of approval

PAJ: 11/28/2000

Understanding Software for Project Management Tutorial - 61

! g?%&?a 25th Annual Sc;’ftware Example Software

P
i

A

\ M Engineering Wcrkshop
A

y Document List .

Software Management Plan (SMP)

Software Requirements Document (SRD)

Software Interface Specifications (SIS)

Software Design Document (SDD)

Software Integration and Test Plan (SITP-1) - Planning
Software Integration and Test Plan (SITP-2) - Procedures
Software Integration and Test Plan (SITP-3) - Reports
Software User's Guide (UG)

Software Operator's Manual (SOM)

Release Description Documents (RDDs)

Delivery, Installation, Operations, and Maintenance Plan(s)

&
.

™

PAL: 11/28/2000 Understarding Software for Project Management Tutorial - 62

W o5 Annual sorware Software Disciplines
§‘5‘ﬁt Enginesring Workshop and Skills
]

Just as thére are.many sub-disciplines in hardware, so there are
also many sub-disciplines in software and different skill sets.

+ Software Disciplines: Software Skills:
= real-time and embedded ~ software managers
systems

= software architects
= -transaction systems

> client-server systems

> data analysis/reduction/
-processing

database

» developers and programmers
» domain experts

~ software testers

> software assurance

Y

» configuration management

Y

image processing
operating system and tools
processes and methods, etc.

» database administrators (DBAs)

Y

> system administration(SAs), etc.

Y

Your project will require a mix of personnel throughout the life-cycle.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 63

25§h Anhuai Software
& Engineering Workshop

Software
Measurement

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 84

T 25th Annual Software
Adl)f Engineering Workshop Software Measurement

i

+ What is Software Measurement?

» Software Measurement is the activity of determining
quantifiable attributes of both products and process.
It is the ‘engineering’ element of software.

+ Measurement (metrics) can help determine:
> ‘Are the software development activities on schedule?
Is the software reliable?
Should | make changes?
How long will testing take?
Will the software perform all critical functions?

Y

A\

Y

\J

PAJ::11/28/2000

Understanding Software for Project Management Tutorial - 65

25ih~Annuai Software
ngineering Workshop ~ Reasons for Measurement

W

m

+ There are 3 reasons for software measurement:

. Assisting Project Management
_+ Validate mission goals
+ Evaluate the quality of the process/product
+ Support decision-making - provide visibility

A

2. Establishing Models
+ Engineering-software
+ Create a corporate memory - baselines/models of current practices

3. Guiding/Demonsirating Change

+ Develop a rationale for adopting/refining techniques
+ Assess the impact of techniques

PAJ: 11/28/2000

Understanding Software for Project Management Tutorial - 66

20 25t Annual Software
L Engineering Workshop

Measuring to Assist
Project Management

+ Measuring progress
> Are the software development activities:on schedule?

+ Earned Value Management (EVM) is our best | |
and most:successful measurement example. i e ;

+ Tie'EVM. to all life-cycle products,
not lines of code or only the number of modules

> “Should | make changes? What types of changes?
+ Measuring quality

> Will the software perform correctly?

> Will the software fail? at critical times?
+ Measuring functionality

~Will the software do all the things it is expected to do?
= "Will all capabilities be included?

| People don’t do what you expect, they do what you insgect.j

PAJ:11/28/2000

Understanding Software for Project Management Tutorial - 67

Simple Example of

25th Annual Software
Managing Progress

Engineering Workshop

fﬁ“i@',,
v

o
ht o

Y2K Renovation of NMS Project

700 T——

800

500+

4004

Points

3001

2004

100 1

Tz T

1726 1 29T 223 T 38 T 322 T 4/5 | 429 | 53 | 527
Date
™ Total Planned A Total Actual 4 Baseline Points

LEarned value is an.excellent. goal-utilizing measures for management.

Each module (165) assigned 4 points: 1-designed: 2- coded; 3-inspected: 4-integrated

PAJ; 11/28/2000

Understanding Software for Project Management Tutorial - 68

 25th Annual Software ; H
Engincering Workshop MI€@SUriNg to Guide Change

+ Guide changes to your project as well as to your
organization

+ The most difficult and least used reason
+ Success requires mature ‘characterizing’

+ This is what continuous improvement is all about
(such as, CMM).
+ Why is it so difficult?
> Clear description of goals must be stipulated.
= Sustained effort on Reason 2 (model building)
> Commitment of planning and resources
= - ‘Mature’ organization

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 69

S 25th Annual Software Example of Measuring
'j“ Engineering Workshop to Guide Chan e
———————___.___________________—-—-——-—J_l

Question Process/Technology . Goal
. -~ Change ~ (Product Measure)
Will - Earrried«Vélue"Techniques\ - i-b' Eliminyaté;Surprisejy
, Will; ” '«}Sqftware’,!nsypectidns . wE Dec‘rea‘se,DefectRates,
Wil -'* Objec't-O}iented Technology ™M |hcrence Reuse Levels
Wil mmp Computer-Aided Software mm@» Raise Productivity
‘ ﬂ Engineering ’ - ,
Wil =@ |ndependent Verificaiion ==p |mprove System
. : and Validation - . Reliability
Wil ™= S Model == Decrease Cycle Time
Wil mm» SW.CMM Level 3 (or 4 or 5 w g Decrease Risk

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 70

25th Annual Software
= Engineering Workshop

———

Software
Perceptions
PAJ; 11/28/2000 Understanding Software for Project Management Tutorial - 71
7§ 25th Annual Software

bf Engincering Workshop. Objectives

+ To provide information on some
perceptions about software that
could be insightful to project management.

+ To highlight key points in software management.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 72

5{‘/“"1% 25th Annual Software —— Perceptions -- Two Sides
‘fiﬁ“}r Engineering Workshop of the Software Coin (1

R
b o— -

Views of Proiect Managers (PMs) ' Views of Software Engineers (SWEs)

1.-SWEs are not good at estimating 1. PMs don’t accept realistic estimates,
costs and'schedules. but insist on cuts OR
: they come to us with already
approved budgets and schedules
(“done deal”) that are unrealistic.

2. It's'hard.to know the true status of 2. PMs often don’t take the time or know
the software. 1 can’t tell what's how to ask the right questions to get
going on “over there™! to the heart of issues OR they ignore

our warnings about the effects of
tradeoffs.

3.-Why does it “take so long” to 3. PMs don’t appreciate the difficulty of
develop software?! Isn'tit “just a software or understand the “ripple
small matter of programming™? effect” of changes.

PAJ: 11/28/2000

Understanding Software for Project Management Tuterial - 73

¥ 25t Annuai Software. Perceptions -- Two Sides
ngineering Workshop of the Software Coin (2)

m

Views of Prdiect Managers (PMs) Views of Software Engineers (SWEs)

+ 4. People on my project want to take -~ .+ 4. 'PMs are unwilling to allocate time

irrelevant classes and expect me and:money for training, but SW/IT
to pay for it: ‘ is a dynamic field and we-don’t
want to become “dinosaurs”!

-+ 5: SWEs are too focused on new + 5. We enjoy technical challenges
technology and playing with-more which is why we chose this field.
features.instead of delivering a PMs should establish and enforce
product to schedule. realistic “freeze dates” and we'll

abide by them.

(Line managers find it hard to hire
SWEs when the technology on the
task is outdated.)

+ 6. It’s hard-to find people with the
right skills for my-project and when
I do they don'’t stay ‘il the finish:

+ 6. Turnover is a fact of life. Not all
parts of the life-cycle are as
exciting to me nor am | equally
skilled in each one.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 74

€ 4z § 25th Annual Software
§f€¥6?mg* Enginegring Workshop

o Mol

Software Management
Considerations

AKA

“Prc_;ject Manager’s
op 13 List”

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 75

B 25ih annual Sorware. SOFtware Management
y Endinesindpornanon Considerations (1 - 4)

+ 1. You need to do accurate software cost l=——] K
estimation and software planning up front!

» “Those who fail to plan, plan to faill”
+ 2. You need the right skills mix on the team and %{
: X N
a capable Software Manager to oversee it all.
» Software Engineers are not an interchangeable commodity.

+ 3. ldentify key software risks up front, and then mitigate
and manage risks throughout the project life-cycle.

+ 4. Make sure that sufficient rigor, methodologies
and discipline are applied throughout the software
development process.

=~ “As a management style, anarchy doesn’t scale welll” «

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 76

25th Anntal Software Software Management
y Engincering Workshop Considerations (5 - 8)

+ 5. Baseline software requirements early, and then
manage “scope creep’. Ensure software requirements
are based on an accurate operations concept.

+ 6. While using COTS software can often save
~ development time, its use has implications for flexibility
and maintainability.

=~ COTS does not equal “turn key”.
+ 7. Software inheritance needs to be carefully considered.

= Evaluate compatibility with requirements, underlying design
decisions, documentation, performance and failure history, etc.

+ 8. Software people need to be involved in
developing the system architecture and in
making system tradeoffs.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 77

o
Lo,

25th Annual Somware ~— SOFftware Management
ly Engineering Workshop Considerations (9 - 11)

v

\,\" e ..(‘/‘

GSre

+ 9 Be sure all external and internal software interfaces
are adequately documented, signed off, adhered to and
tested.

+ 10. You rhust preserve and protect the schedule time
allocated to testing and delivery to operations.

» People will try to push against these deadline
boundaries, but you MUST protect this period!

> Don’tjust allocate test time.
Allocate time to fix bugs and retest.

> The act of delivering takes time. Work backwards
from your delivery date to-determine “freeze dates”.

+ 11. Remember that software quality is built-in throughout
the entire development process, not just tested for at
the end.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 78

b 25th Annual Software Software Management
Engineering Workshop Consider ations (12 - 13)

+ 12. Track and communicate status “religiously”.
Make sure you have enough insight and
visibility into the software status to make
intelligent decisions.

= “The Truth Seeker impacts the truth
that the Truth Teller tells.”

. Collect and track metrics, monitor PFRs, and use “inch pebbles”.

» Use detailed checklists to ensure that all parts ,
ofthe task are completed. v

+ 13. While there are no “silver bullets”, there are proven
techniques to manage software. Avail yourself of
this information and/or hire someone who already

knows it.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 79

25th Annual Software : k
J Engineering Workshop Closing Challenge

>~ Reliable, maintainable, expandable,
well-documented system

» User-friendly system --
easy to use, easy to operate

» Enthusiastic, well-trained workforce ready for
the next challenge on the horizon \1

PAJ; 11/28/2000 Understanding Software for Project Management Tutorial - 80

AT 25th Annual Software k
b Sl Engineering Workshop References (URLs)

+ - hitp://iwww.spmn.com -- Software Program Managers:Network;
home of 16 best practices and Guidebook for Software Acquisition

+ http://lwww.stsc:hill.af.mil/index.asp.-- STSC home page, Lessons Learned and
Process information; CrossTalk Journal - good current articles on software issues

+ http:/lwww.sei.cmu.edu/:- Software Engineering Institute (SEI),DOD FFRDC at
Carnegie Mellon University contains general process information, COTS and
architecture info.

'+ _http:/lwww:software.org/ -- Software Productivity Consortium -
consortium of industry and government focusing on software

+"“http://psmsc.com/ -- Practical Software & Systems Measurement Support Center
(PSMSC)

http://www.computer.org/ |EEE Computer Society site

http://www_tcse.org/ 1EEE Technical Council on Software Engineering (TCSE)
http://info.acm.org/ 'ACM site

http://gantthead.com/Gantthead/default/ New commercial site on managing projects
http://llis.nasa.gov/ NASA Lessons Learned Information System site
http://www.ivv.nasa.gov/SWG/index.shtm! NASA Software Working Group (SWG) site

http://www.ivv.nasa.gov/index2.shtml NASA IV&V Center (Fairmont, WV) with
links to software sub-groups

R

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 81

25th Annual Software
Engineéring Workshogp

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 82

25th Annual Software
7 Enginesring Workshop

Backup Slides:

Recommendations to Avoid
Software Cost Growth by Risk Area

Software Quality

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 83

25th Annual Software - Re@commendations for
Engineering Workshop ‘Experience & Teaming

+ Need project managers and system engineers who
_understand software.

+ System engineers need to understand that software
provides the system level interfaces.

+ Project office needs to have some software expertise.

+ Need to build a team that can work together and
communicate (includes across hardware/software).

+ Project Managers need to be able to identify staffing
problems early.

All recommendations excerpted from
Flight Software Cost Growth: Causes and Recommendations
{JPL D-18660) February, 2000
by Jairus M. Hihn and Hamid Habib-agahi

PAJ: 11/28/2000. Understanding Software for Project Management Tutorial - 84

&

25th Annual Software. - Recommendations for

’ | Engineering Workshop Planning

Need a focused end point with clear success criteria
Need‘ better tailored risk management with contingency plans

Need a plan you can track and hang your hat on based on a complete
life-cycle

Software must have an early presence even in pre-Phase A and be
part of-an integrated pfan

Allocate larger reserves to software

Require that a clear understanding of software be included as part of
NAR approval

Need more detailed planning and tracking of software similar to
hardware

When putting together a plan, get inputs from everyone and
negotiate. Add schedule slack, but make sure all managers know
they are accountable.

Need to change rules of thumb. e.g., software development vs. test
used to be 50/50 now appears to be 15/85.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 85

25th Annual Soitware . Recommendations for

¥y Engincering Workshop . Requirements & Design

+ Must have é development process that deals with

evolving requirements and assumes things will break.
» Early and extensive. prototyping
> Incremental.deliveries and evolving documents
> Isolate interfaces

Identify standardized software functions and put in
hardware.

Need good architecture to define demarcation between
hardware and software.

Do not look at software as separate, but see as an
integrated design.

Get a baseline and configuration management (CM) in
place so can carefully manage prioritized requirements.

PAJ; 11/28/2000 Understanding Software for Project Management Tutorial - 88

25th Annual Software. - Recommendations for
Engineering Workshep. Testing & Tools

+ Testing
> Need to have many and varied software test environments.

> Neéd to have a dedicated integration and a dedicated test team
whose:job it is to break the software.

> Test beds and simulators need to be made a major product
deliverable that is completed early in life-cycle.

+ Tools
= Make sure-target-and development systems are the same.

= lJse design tools with proven record.
» Get methodology and process in place before purchasing tools.

> Need good test analysis tools.

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 87

25th Annual software R@Ccommendations for
Engineering Workshor Inheritance & Staffing

£
A

.

+ Inheritance
~ Need a software inheritance review.

= For successful software inheritance, developers need to
come with the software.

+ Staffing
> -We need to go outside to get more expertise.
Software team needs to understand the system.
Plan to over staff software engineers to deal with turnover.

Need a mechanism to hire more software people without
elaborate hiring procedures.

Everyone should have some mission level training to provide
end-to-end-understanding of the system.

¥

¥

\f

¥

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 88

s e Software Quality Goals

).’ Engineeting Workshop

+ Examples of Quality Goals "

» Performance > Usability

= Efficiency = Verifiability

> Correctness - Portability

~ Reliability ~ Maintainability
= Reusability

> Extensibility

* from:'SORCE Technical Memorandum 14 (JPL D-10459)

Understanding Software for Project Management Tutorial - 89

PAJ:.11/28/2000

G 25th Annual Software .
J Engineering Workshop Software Quality

+ When defining quality goals, don’t just address the major categories of
software - onboard, ground, development environment -- but also
address the major components within each category.

+ Did you consider?
> The reliability and performance of the onboard operating systems
> The robustness of the uplink/downlink software

> ‘The capacity and throughput performance requirements of the
science data product generation software

=-Thecorrectness:of the compilers in the Software Development
Environment

= The timing and fidelity in the testbeds
> The accuracy levels of the simulators
> The usability of development and test tools and related procedures

PAJ: 11/28/2000 Understanding Software for Project Management Tutorial - 90

